

SENSOR CHARACTERISTICS	
Sensitivity - Change in output for change in input. Equals the slope of I/O curve in linear device.	
<u>Hysteresis</u> - output different for increasing or decreasing input.	lesson2¢
<u>Resolution</u> - Smallest measurement a sensor can make.	et438a.pptx
Linearity - How close is the I/O relationship to a straight line.	
$C_{m} = m \cdot C + C_{0}$ Where C = control variable m = slope C_{0} = offset (y intercept) C_{m} = sensor output	14

SENSOR RESPONSE EXAMPLE 2

Example 2-4: A sensor with a first order response characteristic has initial output of 1.0 V. How long does it take to decrease to 0.2 V if the time constant of the sensor is 0.1/s.

 $b_{1} = 1.0V \quad b_{1} = 0.2 \quad \gamma = 0.1 \text{ sec} \quad b_{1} = (b_{1} - b_{1}) \begin{pmatrix} e^{-t/\gamma} \\ e^{-t/\gamma} \end{pmatrix}$ Let $b_{1} = 0.2V$ and solve for t $0.2V = (1.0V - 0.2V) e^{-t/0.1s} \quad \underbrace{0.2V}_{0.8V} = e^{-10t} \quad 0.2s = e^{-10t}$ $0.2V = (0.8) e^{-10t} \quad \underbrace{0.8V}_{0.8V} = e^{-10t} \quad 0.2s = e^{-10t}$ Take $\ln(x) = 10t$ $Ln(0.2s) = Ln(e^{-10t})$ $to solve for t \quad -1.386 = -10t$ $Ln(e^{x}) = x \quad 0.1386s = t$

lesson2et438a.ppt

STATISTICS EXAMPLE A 1000 ohm resistor is measured 10 times using the same instrument yielding the following readings Reading (Ω) Test # Reading (Ω) Test# lesson2et438a.ppt $\mathbf{2}$ $\overline{7}$ Find the mean variance and standard deviation of the tests What is the most likely value for the resistor to have?

